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Abstract. The remote sensing image pansharpening problem under cosparse analysis frame-
work is addressed. To preserve the spatial information of the high-resolution (HR) panchromatic
(PAN) image, a gradient transfer strategy is proposed by introducing a gradient consistency
constraint to the cosparse analysis-based remote sensing image pansharpening model. Thus,
by learning the image gradient information from the HR PAN image, the spatial details of the
fused image can be effectively enhanced. In the proposed method, to save running time, the
cosparse analysis operator is trained offline in advance with a set of training samples. Both simu-
lated and full-scale, real-data experiments were conducted, and the experimental results confirm
that the proposed method outperforms the state-of-the-art remote sensing image fusion methods,
in terms of both the visual evaluation and quantitative measurements. © 2017 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.11.025009]
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1 Introduction

Remote sensing images with high spatial and spectral resolutions have been found to be able to
enhance the performance in many computer vision tasks,'> such as classification, change detec-
tion, map updating, disaster monitoring, and so on. However, most of the earth observation sat-
ellites have two separate channels: a high-resolution (HR) panchromatic (PAN) channel and
several multispectral (MS) channels with a lower spatial resolution (LR). Unfortunately, this
fact is impeding their widespread application. In this regard, a feasible approach is to take ad-
vantage of the complementary spatial/spectral resolution characteristics of the two channels to
obtain HR MS remote sensing images, with the HR details being extracted from the PAN image
and then injected into the MS bands. This data fusion technique is also known as “image fusion.”

During the last decades, a large number of image fusion methods have been developed.
According to the most common classification system, these image fusion approaches can be
divided into three categories: (1) component substitution (CS), (2) multiresolution analysis
(MRA), and (3) Bayesian estimation theory-based methods.> CS methods include intensity hue
saturation transformation,’ principal component analysis,* the Gram—Schmidt transform-based
methods,” and so on, which are usually effective in rendering the spatial details in the fused
image. However, spectral distortion may be produced in these approaches because of the
local dissimilarities between the PAN and MS images originating from the spectral mismatch
between the two channels of the optical sensors. Moreover, band-dependent spatial detail
(BDSD) with local parameter estimation,*’ a data-dependent self-adaptive approach, is an adap-
tive CS method. Recently, Restaino et al.® proposed a new context-adaptive approach in which
the detail injection is performed through injection coefficients, whose values are estimated over
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image segments achieved through a binary partition tree segmentation algorithm. In Refs. 9-13,
MRA-based methods were exploited, where the high-frequency channels of the PAN image are
added to the MS image to provide a sharpened MS image. For instance, a trous wavelet trans-
form-based pansharpening (AWLP) utilizes shift-invariant redundant transforms to obtain the
HR MS images.'*!> Aiazzi et al.'® investigated the behavior of CS and MRA, the two main
classes of pansharpening methods, in the presence of temporal and/or instrumental misalign-
ments between the MS and PAN data sets. In recent years, a new image fusion branch based
on Bayesian estimation theory has attracted the attention of more and more researchers.'’! This
approach reconstructs the (unknown) HR image from its coarse measurements depending on
penalization terms and sparse representation or compressive sensing theory. Li and Yang'’
were the first to address the image fusion problem from the perspective of sparse representation.
Zhu and Blamer®* proposed sparse fusion of images (SparseFI), which explores the same sparse
coefficient vector of the corresponding HR/LR MS image patches over the coupled HR/LR dic-
tionaries to construct the HR MS images. Jiang et al.”® proposed a two-step sparse coding
approach with patch normalization (PN-TSSC) for image fusion. Following this, Zhu et al.**
proposed a sophisticated sparse image fusion algorithm that is based on the SparseFI method,
named “jointly sparse fusion of image” (J-SparseFI). The main contribution of this method is that
the band correlation is taken into consideration. The J-SparseFI algorithm overcomes the mis-
match problem of the coupled dictionary because the spectral response of the PAN image cannot
fully cover the range of the MS image spectral response.

More recently, as a new sparse representation-based approach, the cosparse analysis model
has been attracting researchers’ attention.”>~>’ In the approach proposed in our previous work,”’
the analysis operator for each band is trained with the geometric analysis operator learning
(GOAL) algorithm, offering advanced performance compared with the state-of-the-art image
fusion methods. However, the GOAL image fusion (GOAL-IF) method adopts an online dic-
tionary self-training approach and image patch strategy, which takes much more time than the
traditional methods.

The contributions of this paper are threefold. First, the paper addresses the remote sensing
image fusion problem from the sparse analysis regularization aspect. Under the cosparse analysis
framework, a gradient transfer strategy is proposed to preserve the spatial information. Second,
the analysis operator is offline trained in advance with a set of training samples. That extends the
application potential of the method. Last, the proposed method greatly reduces the computa-
tional burden compared with the other sparse representation-based methods.

2 Gradient Transferred Pansharpening Method Based on Cosparse
Analysis Model

2.1 Pansharpening Problem and Analysis Sparsity Priors

In the proposed approach, we treat the problem of image fusion as a linear inverse problem.
Basically, a strategy based on image patches is adopted, and the image patch size of the HR
MS image is \/m X \/m X B (where B is the number of bands). However, most of the patch-
based methods lead to poor results as they do not take into account the global support of the
whole image during the reconstruction process. Hence, we consider the correlation of the whole
image in the patch-based strategy during the image reconstruction stage. The goal of the image

fusion is to reconstruct an HR MS image X = (X, X5, . .., X,) € RP*" (where p = Bm and x, €
RP¥! is a columned image patch), which can be divided into » image patches from a set of
measurements Y = (y;,¥,,...,y;) € R (where g = B/% +m,y, € R is the columned

observation, and p is the spatial resolution ratio between the PAN image and the LR MS
image) that are possibly corrupted by noise, i.e., an LR MS image and a PAN image, with g < p

Y = MX + v, e

Yuis
ﬂYPAN

PAN images. M € :t7*? is the observation matrix modeling the modulation transfer

where Y = {

YPAN

} € R are the observations, which consist of Y;;¢ LR MS images and

Journal of Applied Remote Sensing 025009-2 Apr—Jun 2017 « Vol. 11(2)

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 06/22/2017 Terms of Use: http://spiedigitallibrary.or g/ss/ter msofuse.aspx



Han et al.: Gradient transferred pansharpening method based on cosparse analysis model

function (MTF)-shaped blur filter and the decimation operator for the HR MS image, as well as
the spectral response for the PAN image. The factor f is used as a trade-off parameter to balance
the relative contribution of the LR MS image and the HR PAN image to the final result of the
image fusion.

Consequently, reconstructing X in Eq. (1) is highly ill-posed. Using additional information
about the signal’s structure can help to tackle this linear inverse problem. One prior assumption
that has proved useful is that the signals of interest allow a sparse representation. The vectors,
whose entries are equal to zero or have a sufficiently small magnitude, are called “sparse.” The
cosparse analysis model**?° assumes that applying a suitable analysis operator Q € R"™? with
n > p to a signal X € RP*" results in a sparse matrix QX € R’ which consists of sparse
vectors. The simplest sparsity measurement is using the £y-pseudonorm || QX]|,. Therefore, the
analysis sparse model can be exploited to tackle the linear inverse problem by solving

arg min [|QX]||, subject to [MX-Y|}<v. )
XeRPX"

Clearly, the above equation is a regularization problem imposing a sparse analysis prior.
However, minimizing Eq. (2) with sparse analysis regularization is known to be nondeter-
ministic polynomial-hard. Several workarounds have been proposed to alleviate this problem.
One feasible approach is convex relaxation, which involves replacing the ¢,-pseudonorm with
the £;-norm. Therefore, any solution X of Eq. (2) using ¢;-regularization can be written as

arg Xm]én |QX]||; subject to |MX-Y| <v. 3)
ERPXT

The most crucial factor for the success of the analysis approach is the choice of an appropriate
analysis operator. However, an analysis operator that is learned from a set of training samples is
known to perform better.

2.2 Gradient Transfer for Remote Sensing Images

For the pansharpening task, the goal is to generate a fused image that simultaneously preserves
the spectral radiation information and the appearance information in the two images. Moreover,
the PAN image is typically characterized by the pixel intensities. To fuse the detailed spatial
information, a straightforward scenario is to constrain the fused image to have a similar pixel
intensity distribution to the PAN image. However, the intensity of a pixel in the same physical
location may be different for the MS image and the PAN image as they differ significantly in
resolution.

The MS and PAN images may also present some local dissimilarities, such as object occul-
tation, contrast inversion, or moving objects, due to the different spectral bands of the sensors or
the different acquisition times. These effects are due to environmental physics.*® However, the
main details in the scene can be essentially characterized by the gradients in the image.
Therefore, we suggest that the pansharpened image will have a pixel gradient distribution that
is similar to that of the PAN image, and the detailed spatial information of the PAN image can
be transferred into each band of the pansharpened image. Therefore, the gradient consistency
constraint can be rewritten as follows:

arg min ||[VX? — VYPAN| “)
XbeRpxr

where VYPAN and VX? represent the gradients of the PAN and b’th band images, respectively.
The HR PAN image can be approximated as a linear combination of the desired HR MS image. '’
The linear model can be modeled as

YPAN = "0,XP + vy = MpX + v, Q)
b

where YPAN and X? represent the PAN image and the 5’th band of the HR MS images, respec-
tively, and @), is the weight of the b’th band. M, is the linear combination matrix, which denotes
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the spectral response of the different remote sensors. v, is the additive zero-mean Gaussian
noise.'” The parameters 6, and M, are determined by the specific satellite sensors. Since the
pixel gradient is similar between the PAN image and each band, the formula can be expanded as

YPAN = ZHbXb —+ \{)
b
=0, X' +0,X> + ;X3 + 0,X* + v,. (6)

To obtain the gradient of the PAN image, we obtain the derivative for the above equation

VYPANII = 91 VXI VYPANIZ = HZVXz VYPANI3 = 93VX3 VYPANI4 = 64VX4, (7)

and then the above equation can be combined as

vx!
VX2
VYPAN[L I Iy, L] = [y, aq, ) VX3 3)
Vx4
vx!
. VX2 64x256
Supposing VX = | o5 |, M = 1.1, 15,1, € R s Mplay, ap,a3,04), and I, = I, =
vx*

Iy = 1, € R4 then the above equation can be written as
M,VYPAN — M,VX. )

This shows the relationship between the gradient of the PAN image and the gradient of the HR
MS image. The function of the gradient transformation in Eq. (4) is revised as follows:

arg Xrenﬂglxr(M;Mz - |IVX

, (10)

where M; represents the pseudoinverse of the M5 matrix. Clearly, it is based on the gradient
consistency constraint and total variation minimization.

2.3 Gradient Transferred Pansharpening Model Based on Cosparse Analysis
Model

Considering the sparse structure of the LR MS image and PAN image, as well as the analysis
operator Q, which is introduced in the next part, the image fusion model can be formulated as
follows:

. A _
arg min|[MX-Y/3 + 7 |OX]|, +4; - (MiM, — 1) - J(X), (11)

with J(X) = |VX| = 3" /(V?X)? + (V/X)?. This can be solved with the alternating direction
method of multipliers (ADMM). Assuming Z = QX, then X is the image consisting of vectored
image patches, and the problem is a constrained convex minimization problem with two param-
eters Z and X, as follows:

. 2
argXIZmnHMX—Yng +2 120+ A (MIM, — 1) - J(X) st Z=QX. (12)

The advantage is that this method can result in global optimization for the whole image rather
than local optimization. In the Lagrangian multiplier method, we use the dual parameter B and
add a penalty term (B, QX — Z). The new objective ¥(X, Z,B) is as follows:
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Algorithm 1 Pansharpening method based on the ADMM.

Input: Q, Kooy, Xo, 7, 4 & — 0.001

1. Initialization: kK = 1, X, = Xo, By =0, Z, = QX,.

2. while ¢ < || Xk — Xk_1]lr and k < Kpax

3. X1 = (AMTM +yQTQ) AMTY + yQT(Z — By) — 41 - (MOM, — 1) . 24%;
4 Zir = Si{QXyp1 + By}

5. Byy1 = By — (L1 — QX 11)

6. k=k+1

7. end while

8. output: X = X4

7 Y
w(X,Z,B) = [MX - Y||3 +§IIZII1 + Ay (MM, —1) - J(X) +7(B.QX - Z) +§|IQX -Z|3

2
25
13)

where ¥(X, Z, B) is convex with respect to Z and X and concave with respect to B. We can thus
iteratively update each of the parameters, while keeping the others fixed. The process can be
summarized as shown in Algorithm 1.

In this algorithm, the relative variation € = 0.001 of the estimated fusion images in two
consecutive iterations is set as the stopping criterion. S% in line 4, with % > 0, is the entrywise

A 14 /4
= [IMX = Y[3 +21Z]l; + 4 - (MM, — 1) - J(X) -3 IBI3+351B+QX-Z|

soft-thresholding operator defined by Si(a) = a — %sgn(a) if |a| > % and is O otherwise.

2.4 Analysis Operator Learning

The image fusion framework employed in this work consists of the two separate stages of analy-
sis learning and image fusion. Offline analysis operator learning is undertaken in advance with
a set of training samples from the MS and PAN images, as shown in Fig. 1.

Examples of the training samples for the analysis operator learning are shown in Fig. 1. In
this data set, two pairs of available IKONOS images and two pairs of QuickBird images with MS
and PAN channels are available. The MS images and PAN images have the sizes of 256 x 256 X
4 and 1024 x 1024 pixels, respectively. To obtain the prominent features of the remote sensing
images, the training samples are dealt with using an image patch strategy. Image patches of size

Fig. 1 The training samples for analysis operator learning.
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\/m X \/m X B are cropped from the LR MS data set. Therefore, each MS image cell has the size
of \/m X y/m x B. Each PAN image cell consisting of B PAN image patches with the size of
\/m X y/m is then columned as training samples, with s; € R? being the i’th training sample.
These training samples are then selected randomly as the training sample set S € RP*V to learn
an analysis operator Q € R"*P, N represents the number of training samples. Here, we set
m =64, B=4, N = 10000, and p = 256.

The goal of analysis operator learning is to find the suitable matrix Q € R"™*? with n > p,
which leads to the analyzed vector Qs; being as sparse as possible for the training sample s;.
Therefore, the analysis operator for a given set of image patches {s; € R¥*1}Y | is formally
denoted as

Q € arg min ) _ [|Qs;. (14)

Clearly, this is nonconvex and discontinuous. One tractable approach is to replace it with
a smooth log-square function®

N P
Q€ arg minZZlog[l + u(Qs)F . (15)

i j=1

Furthermore, to avoid a trivial solution in Eq. (14), we impose certain constraints on Q.
We enforce the full-rank constraint with the below equation to the analysis operator £

h(Q) = log det <%QTQ). (16)

~ plog(p)

The mutual coherence of the analysis operator can be controlled via the below equation

r(Q) =- Y log[l - (0f.@;.). (17)

1<i<j<n

where ®; and ®; represent the transpose of the i’th row and j’th row of €, respectively.
According to Ref. 29, the cost function of the analysis operator learning can be expressed as

N
Q:= arg min Zg(ﬂsi) + k- h(Q)+py - 1(Q). (18)
QTe0B(p,n)

The conjugate gradient on the oblique manifold OB(p, n) is employed to solve the optimization
problem [Eq. (18)]. The parameters k; and y; influence the condition. For more details, we refer
the readers to Ref. 29.

3 Experiments and Discussion

3.1 Experimental Setting

The results are evaluated both visually and quantitatively. For the quantitative evaluation, the
following typical evaluation indices based on Wald’s protocol are utilized: the correlation coef-
ficient (CC),*! the structural similarity metric (SSIM),** the root-mean-square error (RMSE),
the spectral angle mapper (SAM),*! the erreur relative globale adimensionnelle de synthése
(ERGAS),*® and the Q, quality index.’*** The Q, index is calculated over a window of
M-by-M, which is normally selected as M = 16 or M = 32. Q, is averaged over the whole
image to obtain a global quality metric. Q4 is in the range [0, 1], where 1 represents the ideal
fusion, i.e., the fused and the reference images are identical.** In this paper, the block size was set
as 32 x 32 for all the methods. To obtain the simulated data, MTF-tailored low-pass filters were
used to produce the LR MS and PAN images. The Nyquist cutoff frequencies of QuickBird and
IKONOS for the different spectral bands are provided in Refs. 18 and 35. The original MS
images were selected as the real HR images to compare with the fused images.
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To make the comparison more convincing, we chose two top-performing benchmarks, BDSD
and AWLP, from the pansharpening toolbox in Ref. 2. PN-TSSC> and J-SparseFI** were also
used as comparative methods. The parameters for the other methods were set as recommended.
The optimal size of the image patch for the LR MS image was set as 7 X 7, and the overlapping
area size was set as 7 X 4 for the PN-TSSC method. The regularization parameter for PN-TSSC
was set as 8192. Meanwhile, the image patch size of the LR image was set to 5 X 5, which
corresponds to 20 X 20 for the PAN image patch. For the GOAL-IF method, the parameters
were set as suggested in Ref. 27.

For the proposed method, k; and y; in Eq. (18) were empirically set as k; = 40 and y; =
1000 to obtain the optimal analysis operator. The value of § in Eq. (1) was set as = 0.14 for

Fig. 2 IKONOS images: (a) degraded MS image at a 16-m spatial resolution, and (b) degraded
PAN image at a 4-m spatial resolution.

Fig. 3 Results of the image fusion with the degraded IKONOS image: (a) original, (b) AWLP,
(c) PN-TSSC, (d) BDSD, (e) J-SparseFl, (f) GOAL-IF, and (g) the proposed method.
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the IKONOS data set and # = 0.12 for the QuickBird and Pléiades data sets. We set 4 = 7 x 10°
and 1; = 0.31 in Eq. (11).

3.2 IKONOS Data Experiment

The IKONOS system simultaneously offers a four-band MS image with a 4-m resolution and a
single-band PAN image with a 1-m resolution. In this study, we utilized a simulated IKONOS LR
MS image with a resolution of 16 m and a PAN image with a resolution of 4 m, as shown in
Fig. 2. In this simulated experiment, the LR MS image size was 128 X 128 X 4 pixels, and the
corresponding PAN image size was 512 X 512 pixels.

It can be clearly observed from Fig. 3 that, in the pansharpening results obtained by PN-
TSSC and J-SparseFI, the two traditional sparse reconstruction-based algorithms, some of the
spatial details are missing and the results appear a little blurry in some areas. The result obtained
by the AWLP method is acceptable with regard to the spectral characteristic. The BDSD method
suffers from color distortion, and there are some obvious outlier pixels. Although GOAL-IF and
the proposed method obtain more details than the other methods, the proposed method results in
less spectral distortion than the GOAL-IF method. The quantitative assessment results are shown
in Table 1, where the evaluation results, in terms of CC, RMSE, ERGAS, SSIM, and Q,, indicate
that the proposed method achieves a better fusion result than the other methods.

3.3 Pléiades Data Experiment

To make the experiments more convincing, an experiment with the Pléiades data set was also
implemented. This data set was used for the 2006 GRS-S data fusion contest®® and was provided

Table 1 Quantitative assessment results of the simulated experiment shown in Fig. 3.

AWLP BDSD PN-TSSC J-SparseFl GOAL-IF Proposed

cc B 0.9581 0.9561 0.9590 0.9597 0.9604 0.9626
G 0.9583 0.9593 0.9631 0.9640 0.9662 0.9665

R 0.9618 0.9591 0.9626 0.9639 0.9566 0.9683

NIR 0.9297 0.9272 0.9303 0.9334 0.9317 0.9376

Average 0.9520 0.9504 0.9537 0.9553 0.9538 0.9587

RMSE B 70.6731 73.0352 69.6082 68.9156 68.3721 66.6313
G 63.4490 62.6783 58.9273 58.0928 56.4732 56.3961
R 39.2762 40.9982 38.7256 37.9625 42.3549 35.6994
NIR 80.8010 82.8169 80.2390 78.4048 79.9656 76.0650
Average 63.5498 64.8821 61.8750 60.8439 61.7915 58.6980

SSIM B 0.7673 0.7577 0.7718 0.7604 0.7592 0.7723
G 0.7899 0.7919 0.8110 0.8040 0.8148 0.8154

R 0.8598 0.8539 0.8686 0.8657 0.8442 0.8797

NIR 0.6851 0.6857 0.6861 0.6863 0.6980 0.7048

Average 0.7755 0.7722 0.7844 0.7791 0.7791 0.7930

SAM 2.6884 2.8834 2.6857 2.7273 2.8332 2.5933
ERGAS 3.1144 3.1803 2.6252 2.5847 2.6339 2.5035
Q, 0.7198 0.6934 0.7744 0.7548 0.7642 0.7817

Note: The best results for each quality index are labeled in bold, and the second-best results for each quality
index are italicized.
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by Centre National d' Etudes Spatiales, the French Space Agency. The image covers an urban
area of Toulouse (France), and it has a size of 1024 x 1024 pixels. The resolution of the four MS
bands is 60 cm, and there is no available PAN image, since the corresponding sensor was under
development. To obtain the simulated HR PAN data, the green and red channels were averaged,
and the result was filtered with a system characterized by the nominal MTF of the PAN sensor.
The resolution ratio between the MS and the PAN image was set as 4, and the radiometric res-
olution was 11 bits. The simulated LR MS image with a resolution of 2.4 m and the PAN image
with a resolution of 0.6 m are shown in Fig 4. In this experiment, the LR MS image was
256 X 256 x 4 pixels, and the corresponding PAN image was 1024 X 1024 pixels.

The results of the different methods are shown in Fig. 5. To facilitate a comparison, details of
local regions of the images are exhibited in Fig. 6. By visually comparing the fused images with
the original image from Fig. 5, it can be clearly seen that all the methods can effectively fuse the

Fig. 4 Pléiades data set: (a) degraded MS image at a 2.4-m spatial resolution and (b) degraded
PAN image at a 0.6-m spatial resolution.

(9

Fig. 5 Results of the image fusion with the simulated Pléiades image: (a) original, (b) AWLP,
(c) PN-TSSC, (d) BDSD, (e) J-SparseFl, (f) GOAL-IF, and (g) the proposed method.
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LR MS image and the PAN image. All the images have been improved with regard to both the
spatial and spectral aspects. However, it can be clearly seen from the local zoomed image that the
result obtained by the PN-TSSC method suffers from serious spectral distortion, and the rec-
tangular building marked with the red box almost disappears when compared with the original
image. It can also be clearly seen that only a small amount of spatial distortion appears in the
image fusion result obtained by the J-SparseFI method. When we observe Figs. 6(b) and 6(d), it
can be seen that the right edges of the building are blurred to some degree. Although the building
outline can be seen in the result of GOAL-IF in Fig. 6(e), there is some shape distortion. Overall,
the image fusion result obtained by the proposed method is the closest to the original image.

The quantitative assessment indices for the fusion results are shown in Table 2, in which the
best results for each quality index are labeled in bold. This shows that the proposed method
acquires the best evaluation results, in terms of CC, RMSE, and SSIM, which indicates that the
fusion result of the proposed method is the most closely correlated to the original MS image.
However, the J-SparseFI method obtains a better result for the SAM assessment metric, and
BDSD and the proposed method obtain the best results in the ERGAS and Q, indices.
Overall, the quantitative assessment results agree with the visual evaluation, and the proposed
method achieves a better fusion result than the other methods.

3.4 QuickBird Data Experiment

The QuickBird data set provides a four-band 2.8-m resolution MS image and a 0.7-m resolution
PAN image. The size of the LR MS image in the simulated QuickBird data set experiments was
128 x 128 x 4 pixels, and the corresponding PAN image was 512 X 512 pixels, with resolutions
of 11.2 and 2.8 m, respectively, as shown in Fig. 7.

It can be clearly observed from the area marked with the yellow oval in Fig. 8 that the result
obtained by AWLP maintains the spatial information well, but the fused image contains spectral

(9)

Fig. 6 Close-ups from Fig. 5: (a) original, (b) AWLP, (c) PN-TSSC, (d) BDSD, (e) J-SparseFl,
(f) GOAL-IF, and (g) the proposed method.
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Table 2 Quantitative assessment results of the simulated experiment shown in Fig. 5.

AWLP BDSD PN-TSSC J-SparseFl GOAL-IF Proposed
B 0.9311 0.9055 0.9217 0.9282 0.9624 0.9745
G 0.9479 0.9034 0.9222 0.9320 0.9648 0.9794
cc R 0.9365 0.9017 0.9283 0.9392 0.9653 0.9819
NIR 0.8888 0.9509 0.8821 0.9440 0.9386 0.9522
Average 0.9261 0.9154 0.9136 0.9359 0.9578 0.9720
B 21.6809 28.4180 26.3716 18.6852 19.3270 14.8853
G 19.2945 30.7077 29.6512 18.9014 19.6195 14.6786
RMSE R 30.9171 44.2816 39.1592 25.6498 26.4099 19.0255
NIR 65.2980 52.7596 75.8721 39.0127 54.8312 48.0537
Average 34.2976 39.0417 42.7635 25.5623 30.0469 24.1608
B 0.9439 0.9177 0.9602 0.9681 0.9693 0.9810
G 0.9555 0.9083 0.9475 0.9664 0.9716 0.9812
SSIM R 0.9145 0.8584 0.9240 0.9459 0.9562 0.9735
NIR 0.7715 0.8462 0.7690 0.9025 0.8643 0.8836
Average 0.8963 0.8826 0.9002 0.9457 0.9403 0.9548
SAM 4.3356 4.0749 5.3176 2.5387 4.0963 3.4975
ERGAS 3.5219 2.7811 5.3368 3.2093 3.7310 2.9754
Q, 0.9426 0.9650 0.8442 0.8899 0.9387 0.9554

Note: The best results for each quality index are labeled in bold, and the second-best results for each quality

index are italicized.

distortion when compared with the original MS image. Meanwhile, the result obtained by BDSD
suffers from the most serious spectral distortion. It can also be observed that PN-TSSC and
J-SparseFI produce similar results, with only a few artifacts and a small amount of spectral
distortion appearing in the pansharpened image. GOAL-IF and the proposed method produce
similar results, but some details are smoothed. However, the local zoomed images show that the
fusion result obtained by the proposed method contains more spatial details than the results
obtained by the other methods in the runway area marked with the red rectangle. The proposed
method performs well in both the spatial and spectral aspects in this figure. The quantitative

Fig. 7 QuickBird images: (a) degraded MS image at a 11.2-m spatial resolution and (b) degraded
PAN image at a 2.8-m spatial resolution.
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Fig. 8 Results of the image fusion with the degraded QuickBird image: (a) original, (b) AWLP,
(c) PN-TSSC, (d) BDSD, (e) J-SparseFl, (f) GOAL-IF, and (g) the proposed method.

assessment indices for the fusion results are shown in Table 3, confirming that the proposed
method obtains better values for most of the selected metrics in this experiment.

3.5 Full-Scale, Real-Data Experiment

We also evaluate the proposed method in a full-scale, real-data experiment with an IKONOS
image. Figures 9(a) and 9(b) show the original 4-m resolution MS image and the 1-m resolution
PAN image, respectively. D, represents the spectral distortion and D represents the spatial dis-
tortion. The quality not requiring a reference (QNR) index’ is also used to evaluate the fused
image.

The results of the real-data experiment are confirmed quantitatively in terms of QNR, D;, and
D,. The spectral distortion D, is calculated as follows:*’

S

-1

2 A,
Dy= g D D |QMSiaw s MSiowi) = Q(MSy, MSy)|, (19)
B(B-1) b=1 k=1
where B is the number of bands of the MS image, M S, , and MS, [be(1,....,B)]arethe b’th

low-resolution and sharpened MS bands, respectively, and Q is the universal image quality
index. The spatial distortion Dy is calculated as follows:

1& =<
DS - EZ |Q(MSlow,b’PANlow) - Q(MSb’ PAN)|’ (20)
b=1

where PAN and PAN,,, are the full-resolution and downsampled PAN images, respectively.
Then, taking into account the spatial and spectral distortion, the QNR can be written as’’
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Table 3 Quantitative assessment results of the simulated experiment shown in Fig. 8.

AWLP BDSD PN-TSSC J-SparseFl GOAL-IF Proposed

cc B 0.9280 0.9184 0.9239 0.9331 0.9374 0.9447
G 0.9169 0.9145 0.9271 0.9318 0.9385 0.9410

R 0.9390 0.9158 0.9281 0.9325 0.9407 0.9421

NIR 0.9171 0.9190 0.9203 0.9248 0.9302 0.9338

Average 0.9253 0.9169 0.9248 0.9306 0.9367 0.9404

RMSE B 10.5840 11.6378 10.6183 9.9679 9.7855 9.0170
G 23.3733 23.6227 20.3296 19.5810 18.7901 18.2666

R 19.4556 24.7230 20.9856 20.2972 19.1827 18.8071
NIR 41.0628 40.4951 38.6505 37.3867 36.1285 35.1795
Average 23.6189 25.1196 22.6460 21.8082 20.9717 20.3176

SSIM B 0.9802 0.9754 0.9829 0.9840 0.9849 0.9866
G 0.9311 0.9272 0.9527 0.9565 0.9589 0.9614

R 0.9553 0.9192 0.9506 0.9549 0.9552 0.9586

NIR 0.8647 0.8653 0.8676 0.8692 0.8782 0.8805

Average 0.9328 0.9218 0.9385 0.9412 0.9443 0.9468

SAM 2.2300 2.4252 2.4293 2.4251 2.2255 2.2362
ERGAS 2.2532 2.4249 2.1869 21117 2.0410 2.0014
Q, 0.7923 0.7494 0.8067 0.8016 0.8091 0.8183

Note: The best results for each quality index are labeled in bold, and the second-best results for each quality
index are italicized.

QNR = (1 - D,)(1-D,). 1)

The results of AWLP, BDSD, PN-TSSC, and the proposed method are shown in Figs. 9(c)-9(h).
Local zoomed images of the results are shown in Figs. 9(1)-9(n). Here, it can be seen that the
BDSD method generates spectral distortion, as shown in Figs. 9(d) and 9(j). We can also observe
from Fig. 9(e) that the result of the PN-TSSC method has a defect area with incorrect
reconstruction. Moreover, the details shown in Fig. 9(1) have been lost, and the objects in the
scene are blurred to some degree. The result of the J-SparseFI method is also blurred to some
degree in Figs. 9(f) and 9(1). Goal-IF and the proposed method [Figs. 9(g) and 9(h)] generate an
HR MS image with satisfactory spectral and spatial preservation.

The quality assessment indices are shown in Table 4. Clearly, the advantage of J-SparseFI,
GOAL-IF, and the proposed method is that they obtain very low spatial distortion (D, < 0.1).
However, the proposed method generates better D;, D,, and QNR values than PN-TSSC.
Overall, the results of the real-data experiment are consistent with the results of the simulated
experiment.

3.6 Parameter Analysis

In this paper, the fused results are influenced by parameters j, 4, and 4; in Eq. (11). Figure 10(a)
shows the variation tendency of the SAM/ERGAS indices as parameter f changes. This illus-
trates that the trade-off between the MS image and PAN image requires an optimal parameter
setting. The influence of parameter 4, is shown in Fig. 10(b). The tendency of the image fusion
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(f)
(i)
0

(m) (n)

Fig.9 The full-scale experiment with a real IKONOS image: (a) original MS image, (b) PAN image,
(c) AWLP, (d) BDSD, (e) PN-TSSC, (f) J-SparseFl, (g) GOAL-IF, and (h) the proposed method.
Local zoomed images of the results of (i) the AWLP method, (j) the BDSD method, (k) the PN-
TSSC method, (1) the J-SparseFI method, (m) the GOAL-IF method, and (n) the proposed method.

performance in terms of the ERGAS and SAM indices demonstrates that the fusion method
performs better and better as 1, increases. Parameter 4, determines the degree of the gradient
constraint during the image pansharpening process.

The sensitivity analysis for the input parameter y of ADMM is shown in Fig. 11. To obtain
the tendency of the performance with parameter y, the other parameters were set as the optimal
values. The performance of the image fusion is represented in terms of ERGAS, SAM, and Oy,
respectively. Moreover, y = 7 x 10% is the minimum considered in this paper because ADMM
will not obtain a solution with less than this value. Therefore, we use log y to display the trend
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Table 4 Quality measures for the different image fusion approaches with real IKONOS data.

AWLP BDSD PN-TSSC J-SparseFlI GOAL-IF Proposed
D, 0.1408 0.1037 NAN 0.0488 0.0682 0.0464
Dg 0.2045 0.1639 NAN 0.1040 0.0781 0.0654
QNR 0.6835 0.7497 NAN 0.8523 0.8590 0.8913
Note: The best results for each quality index are labeled in bold.
@, B |
33 ) P 275k i
32 -~
s 31 /_/"/ 1 & 27t
% 3 o é
2 / — &
% 29 7::MGAS % 265}
28
27 26| \\/&_—_.
26
25 . . . . . . . . . 255 ]
01 02 03 04 05 06 07 08 09 1 05 1 5 > 25 3
B value 2 alue

Fig. 10 Variation of the image fusion performance (ERGAS and SAM) with parameters  and 4,

respectively. (a) Influence of g and (b) influence of ;.

(a) e (b)

29—

0.62
2851
0.6

28 0.58|

275 0.56

0.54

3

ERGAS/SAM
)
~

0.52

0.5

0.481-

0.46

0.44

16 17 18 19 20 21 2 6 7 8 )
log y value log y value

L
21

Fig. 11 Variation of the image fusion performance with parameter y. (a) ERGAS and SAM. (b) Q,.

Table 5 Quantitative assessment results of the proposed method with different values of

A (4 is from 3x 108 to 7 x 10'9) for the IKONOS data.

2 7x 103 7 x10* 7x10° 7 x 108 7x107 7x108  7x10° 7x10'°
Time (s) 1.3x10* 1.4x10* 1.38x10* 258x10* 242x10* 13.6 11.2 11.7

Q4 0.7093 0.7090 0.7073 0.7071 0.7071 0.7822  0.7817 0.7817
ERGAS 2.8237 2.9034 2.9128 2.9190 2.9191 2.4968 2.5035 2.5035
SAM 3.3015 3.5194 3.5469 3.6396 3.6400 25992  2.5933 2.5959
SS8IMayq 0.7638 0.7531 0.7517 0.7462 0.7462 0.7927  0.7930 0.7910
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Table 6 Time costs of the different image fusion methods for the 512 x 512 IKONOS image.

Method AWLP BDSD PN-TSSC J-SparseFl GOAL-IF Proposed

Time (s) 0.7 0.21 38.2566 19.0887 1287.4158 11.200

Table 7 Time costs of the different image fusion methods for the 512 x 512 QuickBird image.

Method AWLP BDSD PN-TSSC J-SparseFlI GOAL-IF Proposed

Time (s) 0.7 0.3 13.5683 11.6302 1036.110 10.3340

chart. It can be clearly observed from Figs. 11(a) and 11(b) that the larger the value of the param-
eter y, the worse the performance.

Parameter 4 in Eq. (11) determines the weight of the data fidelity term in the loss function.
The quantitative assessment results of the proposed method with different values of parameter 1
are listed in Table 5. It can be clearly seen that the best results are obtained when 4 is above
7 x 108. Moreover, the computational burden is greatly reduced after this point.

3.7 Time Cost

All the methods were implemented in MATLAB® 2012a. The personal computer used was a
DELL T1500. The central processing unit was a dual-core Intel Core i3 540 at 3.07 GHz. The
RAM was 6 GB, and the operating system was Windows 7 64-bit. The running times of all
the methods in the experiments with the IKONOS and QuickBird data sets are provided in
Tables 6 and 7, respectively.

From Tables 6 and 7, it can be seen that the sparse representation-based image fusion meth-
ods (PN-TSSC, J-SparseFI, and GOAL-IF) are time-consuming, which is due to the large com-
putational complexity of the Z;-norm minimization problem. However, the proposed method
takes much less time than the other sparse representation-based methods.

4 Conclusions

We have proposed a remote sensing image fusion method based on a cosparse analysis model.
To preserve the spatial information, a gradient consistency constraint for the image fusion is
proposed under a cosparse analysis framework. The analysis operator is trained offline in
advance, and the HR MS image is obtained by solving a cosparse analysis model. With regard
to the size of the analysis operator, the image is rearranged with vectored image patches of
the same dimension to obtain the global optimization. Both simulated and full-scale, real-data
experiments were implemented, and the proposed method was compared with the other state-of-
the-art methods. It was found that the proposed method performs well in both spectral and
spatial aspects. Furthermore, the proposed method takes much less time than the other sparse
representation-based approaches.
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